Copied to
clipboard

G = C24⋊D9order 288 = 25·32

3rd semidirect product of C24 and D9 acting via D9/C3=S3

non-abelian, soluble, monomial

Aliases: C243D9, (C2×C6).4S4, C22⋊(C3.S4), C3.(C22⋊S4), C24⋊C92C2, (C23×C6).5S3, SmallGroup(288,836)

Series: Derived Chief Lower central Upper central

C1C24C24⋊C9 — C24⋊D9
C1C22C24C23×C6C24⋊C9 — C24⋊D9
C24⋊C9 — C24⋊D9
C1

Generators and relations for C24⋊D9
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e9=f2=1, eae-1=fbf=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, ebe-1=a, fcf=ede-1=cd=dc, ece-1=d, df=fd, fef=e-1 >

Subgroups: 668 in 101 conjugacy classes, 12 normal (6 characteristic)
C1, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C9, Dic3, D6, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, D9, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22≀C2, C3.A4, C6.D4, C2×C3⋊D4, C23×C6, C3.S4, C244S3, C24⋊C9, C24⋊D9
Quotients: C1, C2, S3, D9, S4, C3.S4, C22⋊S4, C24⋊D9

Character table of C24⋊D9

 class 12A2B2C2D2E34A4B4C6A6B6C6D6E9A9B9C
 size 1333636236363666666323232
ρ1111111111111111111    trivial
ρ211111-11-1-1-111111111    linear of order 2
ρ3222220200022222-1-1-1    orthogonal lifted from S3
ρ4222220-1000-1-1-1-1-1ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ5222220-1000-1-1-1-1-1ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ6222220-1000-1-1-1-1-1ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ733-1-1-113-1-11-13-1-1-1000    orthogonal lifted from S4
ρ83-1-13-1-13-111-1-1-1-13000    orthogonal lifted from S4
ρ93-13-1-113-11-1-1-13-1-1000    orthogonal lifted from S4
ρ103-13-1-1-131-11-1-13-1-1000    orthogonal lifted from S4
ρ113-1-13-1131-1-1-1-1-1-13000    orthogonal lifted from S4
ρ1233-1-1-1-1311-1-13-1-1-1000    orthogonal lifted from S4
ρ136-2-2-22060002-2-22-2000    orthogonal lifted from C22⋊S4
ρ146-26-2-20-300011-311000    orthogonal lifted from C3.S4
ρ1566-2-2-20-30001-3111000    orthogonal lifted from C3.S4
ρ166-2-26-20-30001111-3000    orthogonal lifted from C3.S4
ρ176-2-2-220-3000-1-2-311-1+2-31000    complex faithful
ρ186-2-2-220-3000-1+2-311-1-2-31000    complex faithful

Smallest permutation representation of C24⋊D9
On 36 points
Generators in S36
(1 23)(2 35)(3 17)(4 26)(5 29)(6 11)(7 20)(8 32)(9 14)(10 27)(12 31)(13 21)(15 34)(16 24)(18 28)(19 30)(22 33)(25 36)
(1 15)(2 24)(3 36)(4 18)(5 27)(6 30)(7 12)(8 21)(9 33)(10 29)(11 19)(13 32)(14 22)(16 35)(17 25)(20 31)(23 34)(26 28)
(1 23)(2 16)(3 36)(4 26)(5 10)(6 30)(7 20)(8 13)(9 33)(11 19)(12 31)(14 22)(15 34)(17 25)(18 28)(21 32)(24 35)(27 29)
(1 15)(2 35)(3 25)(4 18)(5 29)(6 19)(7 12)(8 32)(9 22)(10 27)(11 30)(13 21)(14 33)(16 24)(17 36)(20 31)(23 34)(26 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 9)(2 8)(3 7)(4 6)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(28 30)(31 36)(32 35)(33 34)

G:=sub<Sym(36)| (1,23)(2,35)(3,17)(4,26)(5,29)(6,11)(7,20)(8,32)(9,14)(10,27)(12,31)(13,21)(15,34)(16,24)(18,28)(19,30)(22,33)(25,36), (1,15)(2,24)(3,36)(4,18)(5,27)(6,30)(7,12)(8,21)(9,33)(10,29)(11,19)(13,32)(14,22)(16,35)(17,25)(20,31)(23,34)(26,28), (1,23)(2,16)(3,36)(4,26)(5,10)(6,30)(7,20)(8,13)(9,33)(11,19)(12,31)(14,22)(15,34)(17,25)(18,28)(21,32)(24,35)(27,29), (1,15)(2,35)(3,25)(4,18)(5,29)(6,19)(7,12)(8,32)(9,22)(10,27)(11,30)(13,21)(14,33)(16,24)(17,36)(20,31)(23,34)(26,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(28,30)(31,36)(32,35)(33,34)>;

G:=Group( (1,23)(2,35)(3,17)(4,26)(5,29)(6,11)(7,20)(8,32)(9,14)(10,27)(12,31)(13,21)(15,34)(16,24)(18,28)(19,30)(22,33)(25,36), (1,15)(2,24)(3,36)(4,18)(5,27)(6,30)(7,12)(8,21)(9,33)(10,29)(11,19)(13,32)(14,22)(16,35)(17,25)(20,31)(23,34)(26,28), (1,23)(2,16)(3,36)(4,26)(5,10)(6,30)(7,20)(8,13)(9,33)(11,19)(12,31)(14,22)(15,34)(17,25)(18,28)(21,32)(24,35)(27,29), (1,15)(2,35)(3,25)(4,18)(5,29)(6,19)(7,12)(8,32)(9,22)(10,27)(11,30)(13,21)(14,33)(16,24)(17,36)(20,31)(23,34)(26,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,9)(2,8)(3,7)(4,6)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(28,30)(31,36)(32,35)(33,34) );

G=PermutationGroup([[(1,23),(2,35),(3,17),(4,26),(5,29),(6,11),(7,20),(8,32),(9,14),(10,27),(12,31),(13,21),(15,34),(16,24),(18,28),(19,30),(22,33),(25,36)], [(1,15),(2,24),(3,36),(4,18),(5,27),(6,30),(7,12),(8,21),(9,33),(10,29),(11,19),(13,32),(14,22),(16,35),(17,25),(20,31),(23,34),(26,28)], [(1,23),(2,16),(3,36),(4,26),(5,10),(6,30),(7,20),(8,13),(9,33),(11,19),(12,31),(14,22),(15,34),(17,25),(18,28),(21,32),(24,35),(27,29)], [(1,15),(2,35),(3,25),(4,18),(5,29),(6,19),(7,12),(8,32),(9,22),(10,27),(11,30),(13,21),(14,33),(16,24),(17,36),(20,31),(23,34),(26,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,9),(2,8),(3,7),(4,6),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(28,30),(31,36),(32,35),(33,34)]])

Matrix representation of C24⋊D9 in GL8(𝔽37)

10000000
01000000
003600000
000360000
002901000
00000010
00000100
00000363636
,
10000000
01000000
003600000
001510000
000036000
00000001
00000363636
00000100
,
10000000
01000000
003600000
001510000
000036000
00000100
00000010
00000001
,
10000000
01000000
003600000
000360000
002901000
00000100
00000010
00000001
,
1711000000
266000000
0022350000
0016151000
0032290000
00000100
00000363636
00000010
,
1711000000
3120000000
0022350000
001150000
0010291000
00000100
00000010
00000363636

G:=sub<GL(8,GF(37))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,29,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,36,0,0,0,0,0,1,0,36,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,15,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,15,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,29,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[17,26,0,0,0,0,0,0,11,6,0,0,0,0,0,0,0,0,22,16,32,0,0,0,0,0,35,15,29,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,36,0],[17,31,0,0,0,0,0,0,11,20,0,0,0,0,0,0,0,0,22,1,10,0,0,0,0,0,35,15,29,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,36] >;

C24⋊D9 in GAP, Magma, Sage, TeX

C_2^4\rtimes D_9
% in TeX

G:=Group("C2^4:D9");
// GroupNames label

G:=SmallGroup(288,836);
// by ID

G=gap.SmallGroup(288,836);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,141,92,254,1011,514,634,956,6053,4548,3534,1777]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^9=f^2=1,e*a*e^-1=f*b*f=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=a,f*c*f=e*d*e^-1=c*d=d*c,e*c*e^-1=d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of C24⋊D9 in TeX

׿
×
𝔽